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LARGE DEFORMATIONS OF A LAMINATED COMPOSITEY
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Abstract—An approximate nonlinear theory is derived to describe the mechanical behavior of a laminated
composite consisting of alternating layers of two homogeneous materials subjected to large deformations. The
theory is based on two-term expansions of the motion across the thicknesses of the undeformed layers. The
kinematics and the balance laws are formulated, and the constitutive equations are worked out for elastic behavior
of the constitutive materials. The governing equations are subsequently written out in detail for the case of a
small amplitude disturbance superimposed on a large static deformation. The latter system of equations is used
to investigate the propagation of small amplitude time-harmonic waves in a prestressed laminated composite.

1. INTRODUCTION

THE states of stress and deformation in a layered medium can conceptually be analyzed
by seeking solutions to the system of governing equations in each layer and by requiring
these solutions to satisfy appropriate continuity conditions at the interfaces as well as
prescribed conditions at the outer surfaces of the body. A rigorous analysis may, however,
encounter rather serious difficulties, especially for large deformations. It is therefore of
interest to investigate certain gross aspects of the mechanical behavior of a laminated
composite by means of a homogeneous continuum model which takes into account, in
an approximate manner, the lamellar structuring of the solid. For a layered medium
consisting of homogeneous, isotropic, linearly elastic layers subjected to small deformations,
a theory for a homogeneous continuum model was introduced in Refs. [1, 2]. The theory
was extended in Ref. [3] to include effects of anisotropy, viscoelasticity and temperature
variations. In the present paper we construct an approximate theory which can describe
large deformations of a laminated elastic composite.

The system of governing equations for the homogeneous continuum model of the
laminated medium is derived in two stages. The first stage of the derivation involves certain
assumptions and operations within the discrete system of layers. In particular, it is assumed
that the motions of the individual layers can be described by two-term expansions in the
local coordinate normal to the layering of the undeformed body. The kinematic variables
that are introduced in the expansions are defined at the midplanes of the layers only.
Also in the discrete system of layers, balance equations of linear momentum and moment
of momentum for the individual layers are obtained by integrating the local balance
equations across the thicknesses of the undeformed layers. These integrations lead to the
definitions of average stress tensors and couple-stress tensors which are again defined in

+ The work of one of the authors (J.D.A.) was sponsored by the Office of Naval Research under Contract
ONR Nonr. 1228(34) with Northwestern University. The work of the other author (R.A.G.) was supported by
the Advanced Research Project Agency of the Department of Defense through the Northwestern University
Materials Research Center.

} Now at Princeton University, Department of Aerospace and Mechanical Sciences.

641



642 R. A. Grot and }. D. ACHENBACH

discrete planes only. The stresses and couple stresses are subsequently related to the
quantities describing the deformation through stress potentials which have also been
obtained by integrating local stress potentials across the undeformed thicknesses. In the
next stage of the derivation a transition is made from the system of discrete layers to the
homogeneous continuum model. The transition is accomplished by defining fields for the
kinematical and dynamical variables that are continuous in the coordinate normal to
the layering. In prescribed discrete planes parallel to the layering the field variables
assume the same values as the variables that were defined in the discrete system of layers.
The resulting system of nonlinear field equations, consisting of balance equations, con-
stitutive relations and a constraint condition, bears a close resemblance to equations
defining a nonlinear theory of elasticity with microstructure.

The approximate theory of the type presented in this paper is useful if the characteristic
length of the variation of the deformation is larger than the characteristic length of the
structuring, For small deformations the continuum model was used in Ref. [1] to study
the propagation of plane harmonic waves. For waves propagating in the direction of the
layering and normal to the direction of the layering, it was shown that the approximate
phase velocity vs. wavenumber curves show good agreement with exact curves. The
equations for large deformations that are derived in this paper are employed to study the
propagation of small amplitude time-harmonic waves superimposed on a large static
deformation. The dispersion relations are derived. It is shown that the results are very
similar to those of Ref. [1], except that the coefficients depend not only on the structuring,
but also on the large static deformation.

NOTATION

Throughout this paper we use standard Cartesian tensor notation. The positions of
material particles before and after deformation are referred to Cartesian coordinate
systems. Upper case italic subscripts assume the values 1, 2,3 and indicate tensors in the
Lagrangian system X ;. Lower case italic subscripts assume the values 1,2, 3 and specify
tensors in the Eulerian system x,. Greek subscripts assume the values 1, 3 and are referred
to the X ,, X ; components of the Lagrangian system. Superscripts in parentheses indicate
whether a quantity belongs to a reinforcing layer or a matrix layer: they are not tensor
indices.

2. DEFORMATION

We consider a medium which before deformation consists of alternating plane layers
of two homogeneous materials. It is specified that the field variables and the material
parameters in the material whose resistance to deformation is larger (the reinforcing
layers) are denoted by superscripts and subscripts f (fiber). The corresponding quantities
in the other layers (the matrix layers) are denoted by superscripts and subscripts m. In
the undeformed body we choose the direction X, perpendicular to the layering, see Fig. 1.
and we consider the motion of the kth reinforcing layer and the kth matrix layer whose
midplane positions in the undeformed state are defined by X¥* and X", respectively.
If the length characterizing the variation of the deformation is large compared to the
thicknesses of the layers, the motion of the kth pair of layers can in first approximation
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where X/ and x{™® represent the motions of the midplanes of the undeformed layers.
In equations (2.1) and (2.2), Y% and ¥y describe antisymmetric thickness shear motions,
and Y} describes symmetric thickness stretch motion of the kth reinforcing layer. Similar
interpretations hold for y§7¥. The expansions for the components of the motion, (2.1)
and (2.2), are in terms of local coordinates X%’ and X% in the undeformed body, see
Fig. 1.

The continuity of the position at the interface of the kth pair of layers requires that
xR xmo YR and P satisfy
Xy, XY, X5, )= FMAX (, X§, X5, 1) = 39X, XYY, X 5,0

+%dm (an‘k)(Xl ’ X(me’ X3a t)' (23)

In the system of discrete layers the state of deformation is now described by the field
variables 9, y¥¥ and x{™, ™0, which are defined only at the midplanes of the un-
deformed reinforcing and matrix layers, respectively. We now proceed in the same manner
as in the linear theories of Refs. [1-3], i.e. we construct a homogeneous continuum model
for the laminated medium by considering the above field variables as continuous functions
of X, whose values at X, = X¥® and X, = X{® coincide with the actual values at the
midplanes of the undeformed layers. The transition to the continuous field is indicated by
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writing X{/Y(X ¢, t) instead of X{/*(X,, X¥®, X,.1), etc. After this transition the deforma-
tion is described by the field variables X! (i ) x™ Y, and 4. The number of variables is
subsequently reduced by noting that x‘f ) and x{™ should be considered as representing
the same function at different locations. We thus replace x{? and x¥{™ by X,(X ¢, 1), and hence-
forth we refer to this quantity as the “‘gross motion.”” By noting that X{™® = xy® .
3(d;+d,,), and by assuming that the thicknesses of the layers are suﬂ‘icnently small, the
difference relations (2.3) can now be replaced by the differential relations

%Xk, 1) = (X g, )+ -y §P(X g, 1), 2.4)
where
g = 0 )Xy, (2.5)
and # is defined as
n=dd;+d,). (2.6)

Equation (2.4) is a constraint condition which holds anywhere in the continuum. The
passage from (2.3) to (2.4) involves a limiting process which is formally justifiable in the
limits d, — 0 and d,, — 0 but keeping # constant.

3. BALANCE OF MOMENTUM

To derive the dynamical balance laws for the homogeneous continuum model we
first consider the balance of linear momentum within each discrete layer. For the kth
reinforcing and matrix layers we have

i+ p AR = pU e (3.1)
i + p ™A = pmiame, (3.2)

where we have used the notation
()= 0 )/Ox,, (3.3)

where x, are the Eulerian coordinates, and where 1/ and t{7*) are the Cauchy stress tensors

in the kth reinforcing layer and the kth matrix layer, respectively. Also, pY* and o™ are

the mass densities, f/® and f{™® the body forces, and a/* and af™® are the accelerations.
It is convenient to introduce the Piola stress tensor which is defined as [4, 5]

T(fk) J(fk)X(fk)t(fk) (3‘4)
TR = Jmo X mgmb, (3.5)

wherein
JUB = det[0xx¥™],  JR = det[dxx{™"]. (3.6a,b)

We also introduce the densities in the undeformed state, p, and p,,, which may be written
in the form

p;=pYPIUY and p, = pmRJem, (3.7a, b)

In this paper we assume that the undeformed layers are homogeneous, ie. p, and p,, are
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constants. Upon substitution of equations (3.4), (3.5) and (3.7a, b), the balance laws (3.1)
and (3.2) can be written as (see, e.g. [4, p- 109] or [5, p. 553]))

T +p, [IV = ppxt0 (3.8)
Ok TR+ P 1™ = p ™. (3.9)

In equations (3.8) and (3.9) the field variables are considered as functions of the undeformed
local coordinates in each layer.

A rigorous solution for the stress distribution and the motion in a layered medium
would be obtained by solving (3.8) and (3.9) in each layer and by requiring that appropriate
conditions be satisfied at the interfaces of the layers and at the outer surfaces of the body.
If a length parameter characterizing the variation of the deformation is, however, large
compared to a length parameter characterizing the structuring, some interesting informa-
tion on certain gross dynamic quantities can be obtained from a homogeneous continuum
model. Such a model can be constructed in the same manner as for the case of small de-
formations, which was discussed in Refs. [1-3].

To derive equations representing balance of linear momentum for the continuum
model we first integrate (3.8) and (3.9) in the undeformed frame over their respective layer
thicknesses and then we add the results to obtain

— — 1
0, TH+0;TH+ i+ {ITH )z =24, = (TS Nggm = - 30} +0/ P = pa?,  (3.10)
where we have used the conditions of continuity of the stresses at the interface between

the layers, and where

(d;+d)TE = IntYO[TYD] 4 It T om0 G.11)
pld;+dy) T = Int¥¥p  £9] 4 Int™®(p,, £ (] (3.12)
pld; +d,)ad = IntYPp Z] + Int™ p 5], (3.13)

In equation (3.11), = 1, 3. Also,
p=np,+(l—n)p,. (3.14)

In (3.11-3.13) we have employed the following notation to indicate integration of a function
gVP(X,, XYM, XP, X5, 1) in the undeformed frame over the thickness of the reinforcing
layer:

34,
IntU®[guM] = J gU(X,, X9, XY, X5, 1) dXY. (3.15)
We have also used
tdm
e g = [ gmx,, Xy, X0, X, 04X (3.16)
—4d,

The balance equations (3.10) are valid for each discrete pair of layers. As in Ref. [3], the
transition from the system of discrete layers to the homogeneous continuum model is
achieved by considering T®(« = 1, 3) as the value at some position X ,, within the kth
pair of layers in the undeformed body, of a field T, (X, t) which is continuous in X 2
The same argument is used for the averaged body force f{*. By employing the field %,(X ., 1)
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which was introduced earlier, and neglecting the difference between the time derivatives
at X, = X¥® and X, = X{, we can, furthermore, replace @* by the field a,(Xy. 1),

X g 1) = pX(Xx. 1), (3.17)

The remaining term in (3.10) is the difference between the interface stresses at the top
and bottom of the kth pair of layers. If we introduce a continuous function X, X, ¢)
whose values coincide with the interface stresses at the interfaces of the layers, then we
can approximate the difference in (3.10) by the derivative of £, with respect to X,, i.e.

1

d +d A{[TY ]x(/’ [T(znzlk)]igma ey = 0 Xy (3.18)

The balance laws (3.10) thus reduce to

("’J’T;,+(‘3222,+Qﬁ = /).%1. (319)

where o = 1, 3.

To deduce the balance laws for the moment of momentum of the continuum model we
first multiply (3.8) by X4 and (3.9) by X¢, and then integrate over the respective layer
thicknesses. For the kth reinforcing layer we obtain

N ATY R ,
aMR+aMYR+ Int‘f"’[Xzf S | oA = o, (3.20)
f 2
where
dMED = ItYOXYTYR, o= 1.3 (3.21)
dep P = IntVO[XY p, f179] (3.22)
dfwff") — Int(fk)[)?(zf)pfjé}f"’]. (3.23)

The integral appearing in (3.20) can be rewritten as

1 )T‘f") . -
T lnt‘f")[X(f’( x| T %= 10, + (T Nxg= 40, ) — T (3.29)
f

where we have introduced

d;TY? = Int/O[TY¥]. (325)
The transition from the system of discrete layers to the homogeneous continuum model is
effected in exactly the same manner as for the equations of linear momentum. Thus we

introduce the field quantities ME(X ¢, 1), TH(Xk. 1), 1¥(Xk,t), which coincide with

MYB TR, 1Y, at positions within the dlscrete layers. Usmg (2.1), i becomes

WM = Iflﬁ(zf[k)’ where I, = {5p,d}. (3.26)

In the continuum model, »{'® is represented by

o = T4, (3.27)
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Finally, in the first approximation we can write the term in brackets in (3.24) as
HITYPNxgr =34, + [T )59 = — a,) > Tl X, 1), (3.28)

The same reasoning can be repeated for the kth matrix layer. Collecting the results, we
obtain the following system of balance laws of moment of momentum :

OMB+Zy— T(Zf,}-l-pfl%’,) = Iflﬁ(zfz) (3.29)
O MU+ — TS+ puls? = LS. (3.30)

Equations (3.19), (3.29) and (3.30) constitute the basic balance laws for the continuum
model of a laminated composite. It should be noted that the interface stress X,; is con-
sidered an unknown quantity which is to be determined from the balance laws. The
boundary conditions corresponding to the balance laws (3.19), (3.29) and (3.30) are

Tnp = TuN,+2ZN, (3.31)
M2 = MAN, (3.32)
M2 = MZIN,, (3.33)

where N is the normal to the boundary surface before deformation. These conditions are
discussed in more detail in Ref. [3].

4. CONSTITUTIVE EQUATIONS FOR ELASTIC MATERIALS

The system of governing equations of the homogeneous continuum model for a layered
composite is completed by specifying the mechanical response of the materials of the
layers. We consider a layered composite consisting of elastic layers. The constitutive
equations for the kth pair of reinforcing and matrix layers may then be written as

0 F(f k)

TYP = p, FET FUR = F(0x{™) 4.1
OF™»
TR = Py T = EulOid™), (42)

respectively, where F; and F,, are the elastic stress potentials of the reinforcing material
and the matrix material, respectively. We now introduce the elastic potential F of the
layered composite as:

PF (0,5, 0,057, 0050, ), 5P) =

] e R0 axy

3dm
R I CE R X - XTI GO

In (4.3) we have used the form (2.1) of the motion and passed to the continuum model in
the usual manner. Using (4.1){4.3) and passing to the continuum model, we obtain the
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following constitutive equations for a layered elastic composite :

= Ve e
(1=—mM3, = Pﬁ(a(:{;g,‘;’)) (4.6)
T = o @
(1-mTY = (ji;;)’ (4.8)

where 5 is defined by equation (2.6).

Equations (4.4)(4.8) are the constitutive equations, according to the continuum model,
of a nonlinear laminated elastic material. Equations (2.4), (3.19), (3.29)+3.30) along with
the constitutive equations (4.4)+(4.8) form a complete system of nonlinear differential
equations for the gross motion X,, the local motions ¥4}, ¥ and the interface stress
vector Z,;.

By substituting the constitutive equations (4.4)}4.8) into the balance laws (3.19),
(3.29}+3.30) and neglecting body forces and body couples, we obtain the following set of
governing equations:

5(Cz'*ﬂx s %t a(;T,/,m) Lo+ q(:i(m)) RO+ l;,]ﬁ o

5¢(m) OER+0,T0 = p% (49)
56(2;2:) : +ﬂ(aaM n/:‘zfl’ o+ 2wM§’m WA To =T = 1Y) (4.10)
S(Zigj)a % afaM ﬁ’)ﬁ o+ ;A;ﬁ'@ WE =T = Lys. (41D

For completeness we also list the constraint condition (2.4)

02%, = Y+ (1 — iy (4.12)
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5. SMALL DEFORMATIONS SUPERIMPOSED ON A LARGE UNIFORM
DEFORMATION

In this section we derive the governing equations for a disturbance of small amplitude
superimposed on a large static deformation. The static deformation is described by

X0 = AyX,+ A3 X, +b
v = B (51
wgme — By,
where Ay, A5, BYY, Bf? and b, are constants. The constraint equation (2.4) requires that
Ay = nBY) +(1—n)BSY. (52)
From the balance equations (3.29) and (3.30) we conclude that
29 = TY(A,0, BY)) = T5(Aun, B (5.3)
Equation (5.3) can be considered as an equation determining BY) in terms of A4,, and

By, or conversely as determining By in terms of A4,, and BY).f
We consider motions defined by

% = %0+ (5.4)

W~ v+ 94 (53)

) — gm0 4 l,b""’ (5.6)

T, =23+5,, (5.7)

where i, Y9, Y5 and £, and their first order derivatives are small quantities compared

to x?, etc. To w1thm linear terms in @, %%, ¥4 and £,; the system (4.9-4.12) reduces to

E 0,05, + nDEIOP ) + (1 —)DIma 50 + 0,22, = pii (5.8)
aﬂnla 8ﬂw(f)+221—D§{)naaﬁn—H(n{)$(2fn) = If'Z(Zfl) (5.9
E,0,0,05% + £, — Do, i, — HSWS = LSy (5.10)

Bait; = nP) +(1 — sy, (5.11)

t The solution which follows from (5.1)«(5.3) is identical to the exact solution obtained by considering the
discrete layers, as shown in the Appendix.
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where
E o +p {1—y) e
afinl — lf a ) A
i =Pl a0a,, 0AG0A,,
) *"[()
) —
Danl'“pf-;A B(f)
‘;;F(J
pm — € lm
anl pm ’3411?3(2":,)
“21;'1)_
baBnl = - ~
( A,,(‘A,,,,
[;()
E(Bnl = Im A
¢ Aal( Aﬂ"
avF
o
Hi' = py (meme (5.12)
‘;Zf*()
m) _ \( m_
R ;o
where FJ and F,, are defined as
FY = Fy(A,, BY) (5.13)
Fp = Fu(Ay. BS). (5.14)

In deriving (5.8)~5.10) we have used (4.3) to show that in the uniform state defined by (5.1)

F . oF . oF P
AT |~ RN — AaueeD o ~ dowimapel, =0 B

The system of equations (5.8)~(5.11) are the governing dynamical equations, according
to the continuum model, for a small deformation superimposed on a large uniform static
deformation. If we assume that the materials constituting the lamina are isotropic and
that the large deformation is such that one of the principal directions is normal to the
layers, we can choose the x{ system as

X=X,
9 =0 X, (5.16)
.’2(3) == /‘u}X},‘

We also assume that the local motions are of the form
I = 1%,

0 3
! (anl) = ’{(2’")521,~

(5.17)

where
2= A +(1 =g (5.18)
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For an isotropic material, the stress potential is a function of the strain invariants,
0 0
Fp = F)I,, 11, 111,

o (5.19)
F° = FY(1,,,11,,, T1L,).

In equation (5.19),
I, = trace (CY) = (4, + (A2 +(4,)’
I, = trace (CY”) = (A;)' +(A¥)* +(45)* (5.20)
I, = trace (CV°) = (4,)° +(A¥) +(4,)°,

where
C(afﬂ) = azlAﬂl
CH = CY) = A,BY (5.21)
cY) = B(zf)_

Similar expressions can be written for I, I1,,, III,, and Ci}.

For convenience we introduce the following quantities which are related to the large
static deformation:

(a) the densities of the statically deformed state

po - Py
L A A
0 Pm
Pm = s 5.22
PN (-22)
0 14
p =
AyAzAs
(b) the deformed layer thicknesses and their ratios
dd = d m
a0 ‘Zf’
0 __ S
T wrd” "2, (5.23)
(m)
1-4°=(1-
2
where
p° = pin®+pd(1 —n°) (5.24)
(c) the principal stresses in the direction of the layering
oF¢
tU) — 0 Fa
a pf o (711,, (
no sum on a) (5.25)

m a_aTay
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and those in the direction normal to the layering

{5.26)

OFY o OF2

[Note that this is equation (5.3) written in the deformed body.] We also define the
average principal stresses

T, =% +(1—num. (5.27)
By employing (5.16-5.27), the system (5.8-5.11) reduces to
p°711011iy + p°73103300, + p°a01 303 + p°n° B0 Y] + p°(1 —n°)BSYO1YST + 032, = o8,
(5.28)
P°71201182 + p°732033, + pOn°B010Y) + p°n° B0 Y3
+p°(1 =109 5T + p° (1 —n)B5P00 53 +05Z,, = pOl, (5.29)
%511+ 0% sla + 951y + 0 n BT + %1 ~nBOSTEL+ s51, = 0%
(5.30)
199201109 + 1999035309 + 100, 1,01 3953 + E11 — p°B{D01i8, — pPyRIY) = IWY) (531
190031093 + 1090055092 + £55 — 0010118, — pO P03, — pyIWH = I (5.32)
190301509+ 199420550 + 001,01 3950 + E23 — pOBY03, — pyWR = 1Y (533)
I3y mo1 105 + 1350530 + 10 m01 3053 + Za1 — p° Y3018, — paySTUSY = If‘p(m) (5.34)
1970085503 + 10953035053 + £55 — p PS04, — pO B0sii, — py Wy = IS0y (5.39)

10yma1 70 + 109500539 5 + I m@1 305 + 255 — p° B§R050, — ppySI0SY = I3 (5.36)

and B B ‘
Ogity = W +(1—n°Wsp. (5.37)
In equations (5.28-5.37),
S0, 20
PToaxY’ " px00x0

where x? is defined by (5.16). We have also introduced

I . < 1 & 1
'p ir = —(]‘szl > 'p(m) = (2 Xy =2 I(} = —Po(d?)z,
A%

I = ooy (5.38)
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The coefficients appearing in (5.28-5.36) can be written as:
S R atm 18,
T = '5[” loga, T ") ar0g, |~ ° Flog

1 (m) __
o = o] QP S Py |

=2
ﬂ

(A)* = ()

- _Q'_l_)__ {t, 1)
N3 = 700 ) =)

“g_agf (F, ~ 1)
T = )

_ 1 2o P2 (5 —t,)
N3 TR o v gy S Y
Va2 p{ P gy g ey
I .
733 = 0 Flog Ay
R B . W
= 3| P Glog s o dloga, TtV

LD - (),
g “}55{ 1) — Py ]

gy - L At) 1 P
! po 0/11 l(zf) po 6}»2’0
1 (l(f))lt(f),”(,{ )Zt
R R SN B U L
A POl (A =Y ]
1 &Aaty) 1 AP
f) o - 32 - 2 3 5.39
ﬁ23 p() 813 A(zf) po {M‘{’ } ( )
1 atln
?(f) S
" ﬁ? 0g 4
(l

{(f) —1,
[(/1 P -y ’)2]

(4 )2 8 — )
Wi = [(”‘“——*mj]

()
0 (,13)2[ A ¢
3= )«w]

m_('{s)z -t
B2 =0 -Gy
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. i1 e 1 o
N T3 8310 1. T D -
2| py dlog iy p; dlog ik,

o (l(zf))Z[ t(lf)“tz :l
21 0 (

+7¥3+ 3’(3"?}

Il

~

Py LA =YY
v‘zfz):Lwatz

p? dlog Y’
TS L I Sl
A VN e

The coefficients B, etc., can be obtained by replacing (f) with (m) in the foregoing ex-
pressions.

6. DISPERSION RELATIONS IN STRESSED LAMINATED COMPOSITES

The system of equations (5.28)(5.37) is now used to examine the propagation of small
amplitude harmonic waves in a stressed laminated composite. We assume that the small
superimposed deformation has the form:

(u;, —(2{), ‘)”21 s 221) = (ay, b ), b(znzl)s azz)eXp{ik(ni)—‘? —ct)}, 6.1

where a;, by, b7, 0, are constant amplitudes, k is the wavenumber, n; the unit vector in
the direction of propagation, and ¢ the phase velocity. We will examine the following
special cases:

Case 1
Longitudinal waves propagating in the x,-direction (ny = 1, n, = ny = 0).

For waves of this type the nonvanishing field variables have the form
(i, ¥, 053, Z12) = (a,, bY], bS53, 0,,)explik(x] —ct)). 6.2)

Substitution of (6.2) in {5.28-5.37) yields a system of homogeneous equations for the
amplitudes a,, by}, b3, 5,,. By requiring that the determinant of the coefficients vanish,
the following dispersion relation is obtained :

(52_?11) (ﬁ(f) ﬁ‘m)
lz(ﬁ(zfl)_ﬁ(zml)) EZ(C —F12)— 1272,

=0, (6.3)

where we have defined the nondimensional wavenumber k
k = k(d9+dR). (6.4)
We have also introduced an effective coefficient
()

_ 1 P? f))’(zfz} P(m}}’z 2
o e T2 6.5
Y22 p()( ’70 + (- {6.5)
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In the limit k — 0, the wave speed ¢ becomes

(mh2
5, PP L U (6.6)
22

Case 2
Vertically polarized shear waves propagating in the x;-direction (n, = 1,n, = n; = 0).

For this type of wave motion the nonvanishing field variables have the form
(@2, Y085, Z51) = (a5, b1, b, 05,) explik(x$ —ct)]. (6.7)

The dispersion relation is obtained as

2_ = (f) _ pim)
(c ?12() ) (zﬂli I_ﬁz) =0, 63)
12(ﬁ(1f2’—ﬂ1"§) k (c*—=711)— 1275,
where 7,, is defined as
_ 1 [p9e) oot
= ) 6.9
Y21 po[ r’o +(1_ o) ( )
In the limit k - 0, ¢ reduces to
(f) __ pim)2
C2 — _}712_(ﬁ12_ B(IZ) ] (610)

V21

Case 3
Horizontally polarized shear waves propagating in the x,-direction (n, = 1,n, = n, = 0).

The nonvanishing field variables have the form
(@3, 943,953, Z,5) = (a,, byl by, 0,3)explik(xX} —ct)]. 6.11)

In this case the equations of motion uncouple and we obtain a symmetric mode (i) with
constant phase velocity
62 = ?13 (612)

and an antisymmetric mode (343, y§3, £,,) with phase velocity

= y13+ 12 EZ N (613)
where
_ 1[p3¥3 p.?'v‘z"s’}
Y . 6.14
2 p°[ n° " (1-n° (©.19

In the limit k — 0, ¢ - co. If we introduce the frequency @ = ck, (6.13) can be rewritten
as

_ 125
w? — yl3kz+ﬁo)_2. (6.15)
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As k — 0 we obtain the cut-off frequency

125
(l)z = (Td*?—‘;_zso)*z' (6]6)
Case 4

Longitudinal waves propagating in the x,-direction (n, = 1, n; = n; = 0).

In this case the nonvanishing field variables have the form

(2,092,957, Z,5) = (az, bY}, b7, 0,,)explik(X§ —c1)]. (6.17)
In the usual manner we obtain the dispersion relation
(f)___( O)ZEZ 2 (_2
Pf[?’ ] Po (6.18)

PolFza — K22 MO =% pOLye — (1 —n°)k2c?)|
In the limit kK — O, the phase velocity ¢ becomes

()., (m)
2 _ PmeVzﬂzz (6.19)

(Po) Y227 (1 -

Case 5
Transverse shear waves propagating in the x,-direction (n, = 1, n, = ny = 0).

We consider a transverse shear wave traveling normal to the layering with its amplitude
in the x,-direction. It should be noted that the phase velocity of a shear wave propagating
in the x,-direction with amplitude in the x,-direction can be obtained from the following
results by replacing the subscript 1 by 3. The general solution of a transverse shear wave
propagating normal to the layering is the sum of these two solutions. If the displacement
is in the x,-direction, the wave is described by the following field variables:

(@, 99,957, 220) = (a4, by}, bSY, 05 )explik(x3 —ct)]. (6.20)
The dispersion relation is
f) _ (1] ZEZ 2 CZ
pf[y 2 in ()) ]0 (m) __ po 0212 .2 (621)
PolF21 —K2A M1 =1 paly§? — (1 —n°)’k3c?]

In the limit k — 0, we obtain

2 PIPaYSSY 622)
(p°)2721m°(1 = n°) '

7. CONCLUSIONS

In this paper we have presented the kinematics, dynamics and constitutive equations
for a homogeneous continuum model of a laminated nonlinear elastic composite. The
governing equations were obtained by a procedure similar to the one introduced for the
linear case in Ref. [1], and further extended in Refs. [2] and [3]. It was assumed that in the
continuum model the kinematics of a laminated composite can be described by the gross
motion of the composite and by two local motions of the reinforcing layers and the matrix
layers, respectively. The local motions are related to the gross motion by a constraint
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condition which represents the continuity of the displacement at the interfaces of the
layers. In the continuum model, the dynamical balance laws consist of the gross balance
of linear momentum and the balance of moment of linear momentum of the reinforcing
layers and of the matrix layers. In the balance laws, the interface stress vector is introduced
as an independent dynamical quantity which is to be determined by solving the balance
laws. The theory is completed by formulating the constitutive equations for the stress
resultants and moments of stress for elastic laminae. As shown in Ref. [3] for the linear
case, by the present approach the constitutive equations can be written without difficulty
for viscoelastic or more general material behavior of the layers.

The theory was used to investigate the propagation of small amplitude time-harmonic
waves in a prestressed laminated composite. These waves are dispersive and the nature
of the dispersion relations is similar to those obtained for a linear material, the major
difference being that the coefficients depend on the state of deformation.

APPENDIX

Exact solution for the case of uniform deformation of the layers

The problem of a layered composite material which is in a state of uniform static de-
formation in each layer can be solved rigorously. In this appendix we will present the
solution and show that it agrees with the static solution of the approximate theory presented
in Section 4.

The geometry of the layering is shown in Fig. 1. Within the kth pair of layers the balance
laws in terms of the Piola stress tensor are

OxTYP =0 —3d; < X,— XYY < 34,
Al
OxTED =0 ~3dp < X,— XYY < 4d,,. (A1)
We assume that the deformation within each layer is uniform, i.e.
XX ) = AGPOX+bY 4, < X, —-XY0 < 4d, A2)
X™(Xg) = AFOX g +b™  —4d, < X,~ XV < 44, '

where AYY, b{Y, AZP and b{™ are constants within a layer, but may vary from layer to
layer. From equations (4.1) and (4.2) we conclude that the Piola stresses for the kth pair
of layers are constant within the layers:

TEY = TH(ALY)
A3
TG = TEARD) (A

where TY)( ) and TZ( ) are the response functions of the reinforcing and matrix layers,
respectively. From (A.3) it is easily seen that the balance laws (A.1) are identically satisfied.
We thus need only to satisfy continuity of the displacement and the stress vector at each
interface. The continuity of the displacement at the interface between the kth reinforcing
and matrix layers yields

XX, XYY —3d,, X3) = x{™(X |, X0 +4d | X3). (A4)
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At the interface between the (k — 1)th reinforcing layer and the kth matrix layer we have

AU XYY 13, X ) = XX, XTY -4, X )

(A.5)

Since the stresses are constant in each layer, the continuity of the components of the

stress vector at these interfaces can be written as
k. k
T4 = T4V

k—1) __ (mk
T D =THY.

Substituting (A.2) in (A.4) and (A.5), one sees that since X; and X are arbitrary,

AGY = A
and
A = ggE D)

where « = 1, 3. By induction on k we have

AYR = A = AYD = A = 4
for all (k, r). Combining (A.6) and (A.7), and using (A.10), we have

TYAu AFP) = TH( A, AT,
which implies thatt

AYP = AY*D = = AYP = BY).
Similarly, it follows that

AQR = AQE-D = = AP = By,
The constants BY) and BY? are related by
TYNAu, BY) = TSN Au, BEY).

We can now write (A.2) in the form

XX ) = A X, +BRPX, +b/P

XX ) = AgX,+BIX,+bm™.
The continuity conditions (A.4) and (A.6) then reduce to

B 4 BYXYO —1d,) = bi™ + BE(XE™ +4d,,)
b+ BROCYH D+ 3d) = b+ BRXE™ ~ 1d,).

Subtracting (A.17) from (A.16), we obtain
PP L BHXYP — b~ D —BYXYE D = d BY) +d,, BYY = (d,+d,)As

— (X9 XY ) Ay,

where we have defined
Ay = nBY) +(1—n)BYY,

+ We assume that the response functions T4} () are one to one.

(A.6)
(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
(A.17)

(A.18)

(A.19)
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and where y = d,/(d;+d,,). By induction (A.18) yields

b7 + BRXYP —bi/" —BHXY? = (X491 = X4") Az (A.20)
By choosing r = 0 as a reference, we obtain
b+ BRPXYY = b0+ BRXY O+ (XYY~ XY )y (A21)
Similarly for the matrix, it can be shown that
bR 4 BIOXE™ = b" + B XTO + (XY - X "MA,. (A.22)
Substituting (A.21) and (A.22) into (A.16) gives
B+ BHXYD — 4, XY = b"+ B{PXTY — A X o = b,. {A.23)

By combining (A.21-A.23) with (A.15), the deformation in the kth pair of layers reduces to
XX ) = AgX,+AnXY¥ +b+BH X, — XY")
XX ) = AgX,+ A X§+ b +BE(X, - XT),

where A, BY}, B§p satisfy (A.14) and A,, is defined by (A.19). It is easily seen that we
can write (A.24) in the form:

XX ) = XXy, XY, X3)+BRX - X¥Y)
XX ) = XX, X5, X3)+ Bi(X, - X i),

where X,(X ) is given by

(A.24)

(A.25)

fl(XK) = Aa,Xa+A21X2+bl, (A26)

which can be identified with the gross displacement. Since the stresses are constant within
each layer, this solution is identical to the one presented in Section 5.
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AGcTpakT—BBIBOAMTCH NPUOIMXKEHHAR HENWHCHHAs TEOPHN AN OMUCAHMR MEXAHMYECKOro NOBEHeHUS
CIOMCTbIX MAaTepHalloB, COCTaBIIEHHBIX W3 TIEPEMEHHbIX CAOEB OBYX OQHOPOAHLIX MAaTEPHaNoB, NOABE-
pxeHHbIX GonbuiuM aepopmammsaM. Teopus OCHOBAHA HAa Pa3NOKEHUSX [ABHXEHHS, COCTORIILUX M3
ABYX WICHOB, TIO TOJIlMHEe HeaedopMMpoBaHHbIX cnoes. [1ar0TcA 3aKOHbl KHHEMAaTHKH H DaBHOBECHHA, a
TaKKe COCTABJAIOTCH ONPEACIAIOLIME YPABHEHHA IJIA YNPYrOoro MHOBEACHHS CJOMCTBIX MaTepRajioB.
IpuBoauTcA MoApobHO onpeaensolye ypapHeHus Ul CNy4as BO3MYILEHHS C MAnoid aMINMTYAO,
HANIOXKEHHOTO Ha Oonbliyio crarudeckyio nedopmauuio. HMcnonbiyercs cHcTeMa ypaBHeHHit s
MCCNCAOBAHUA DACHPOCTPAHCHUA I'aPMOHHYCCKHX BOJIH B HOPCABAPHTCIALHO HAOPAXEHHBIX CHOHCTBIX
MaTepHaiax.



